

FAST RECOVERY RECTIFIERS

Reverse Voltage - 400 to 1000 Volts Forward Current - 1.0 Ampere BA157 BA158 BA159

DO-41 Axial Leaded Plastic Package RoHS compliant

FEATURES:

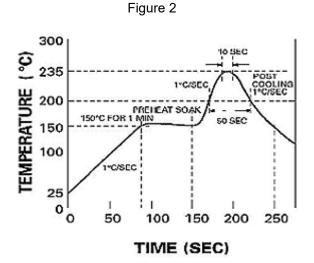
- 1. The plastic package carries Underwriters Laboratory Flammability Classification 94V-0
- 2. Fast switching for high efficiency
- 3. Low reverse leakage
- 4. High forward surge current capability
- 5. High temperature soldering guaranteed:
- 6. 250 °C/10 seconds, 0.375" (9.5mm) lead length, 5 lbs. (2.3kg) tension

ABSOLUTE MAXIMUM RATINGS (Ta = 25 °C Unless otherwise specified) 1

PARAMETER		SYMBOL	BA157	BA158	BA159	UNIT
Maximum repetitive peak reverse voltage		V_{RRM}	400	600	1000	V
Maximum RMS voltage		V_{RMS}	280	420	700	V
Maximum DC blocking voltage		V_{DC}	400	600	1000	V
Maximum Average Forward Rectified Current 0.375" (9.5mm) lead length at T _A =55°C		I _(AV)		1		Α
Peak Forward Surge Current 8.3ms single half sine wave superimposed on rated load (JEDEC method)		I _{FSM}	30		Α	
Maximum Forward Voltage at 1A		V_{F}		1.3		V
Maximum Reverse Current at Rated DC Blocking Voltage	$T_{J} = 25^{\circ}C$ $T_{J} = 100^{\circ}C$	- I _R		5 50		μA
Typical Junction Capacitance ¹		CJ	15		pF	
Maximum Reverse Recovery Time ²		t _{rr}	150	250	500	ns
Operating and Storage Temperature Range		T _J , T _{stg}	-65 to +150		°C	
Typical thermal resistance ³		$R_{\theta JA}$	50		°C/W	

Note:

- 1. Measured at 1MHz and applied reverse voltage of 4.0 VDC
- 2. Reverse Recovery Test Conditions : $I_F = 0.5A$, $I_R = 1A$, $I_{rr} = 0.25A$
- 3. Thermal resistance from junction to ambient at 0.375"(9.5mm)lead length, P.C.B. mounted



Recommended Reflow Solder Profiles

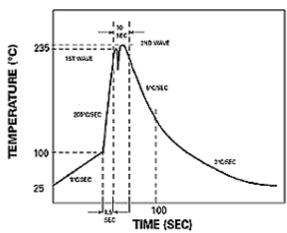
The recommended reflow solder profiles for Pb and Pb-free devices are shown below.

Figure 1 shows the recommended solder profile for devices that have Pb-free terminal plating, and where a Pb-free solder is used.

Figure 2 shows the recommended solder profile for devices with Pb-free terminal plating used with leaded solder, or for devices with leaded terminal plating used with a leaded solder.

Reflow profiles in tabular form

Profile Feature	Sn-Pb System	Pb-Free System
Average Ramp-Up Rate	~3°C/second	~3°C/second
Preheat – Temperature Range – Time	150-170°C 60-180 seconds	150-200°C 60-180 seconds
Time maintained above: – Temperature – Time	200°C 30-50 seconds	217°C 60-150 seconds
Peak Temperature	235°C	260°C max.
Time within +0 -5°C of actual Peak	10 seconds	40 seconds
Ramp-Down Rate	3°C/second max.	6°C/second max.



Recommended Wave Solder Profiles

The Recommended solder Profile For Devices with Pb-free terminal plating where a Pb-free solder is used

TIME (SEC)

The Recommended solder Profile For Devices with Pb-free terminal plating used with leaded solder, or for devices with leaded terminal plating used with leaded solder

Wave Profiles in Tabular Form

Profile Feature	Sn-Pb System	Pb-free System	
Average Ramp-Up Rate	~200°C/second	~200°C/second	
Heating rate during preheat	Typical 1-2, Max 4°C/sec	Typical 1-2, Max 4°C/Sec	
Final preheat Temperature	Within 125°C of Solder Temp	Within 125°C of Solder Temp	
Peak Temperature	235°C	260°C max.	
Time within +0 -5°C of actual Peak	10 seconds	10 seconds	
Ramp-Down Rate	5°C/second max.	5°C/second max.	

TYPICAL CHARACTERISTICS CURVES

Fig 1: Forward Current Derating Curve

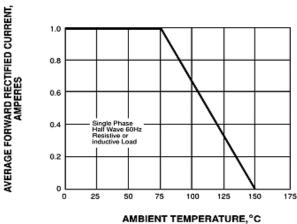


Fig 2: Typical Instantaneous Forward Characteristics

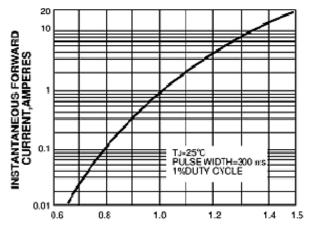


Fig 3: Typical Junction Capacitance

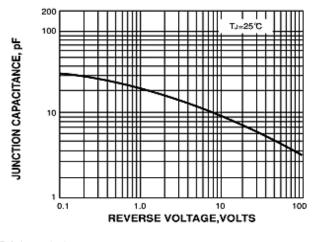


Fig 4: Maximum Non-Repetitive Peak Forward Surge Current

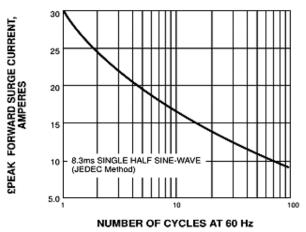


Fig 5: Typical Reverse Characteristics

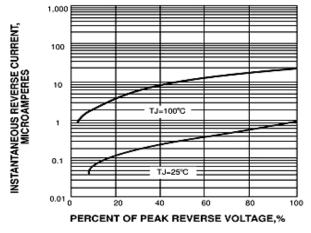
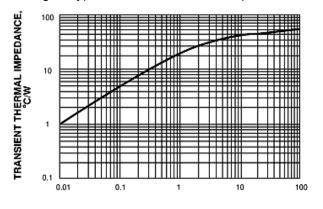
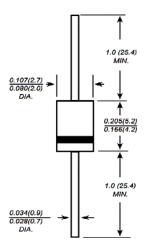



Fig 6: Typical Transient Thermal Impedance

t,PULSE DURATION,sec.



PACKAGE DETAIL

DO-41 Axial Leaded Plastic Package

Dimensions in inches and (millimeters)

Mechanical Data

Case: JEDEC DO-41 molded plastic body

Terminals: Plated axial leads, Solderable per MIL-STD-750, Method 2026

Polarity: Color band denotes cathode end

Mounting Position: Any

Weight: 0.012 ounce, 0.33 grams

Recommended Product Storage Environment for Discrete Semiconductor Devices

This storage environment assumes that the Diodes and transistors are packed properly inside the original packing supplied by CDIL.

- · Temperature 5 °C to 30 °C
- · Humidity between 40 to 70 %RH
- · Air should be clean.
- · Avoid harmful gas or dust.
- · Avoid outdoor exposure or storage in areas subject to rain or water spraying .
- · Avoid storage in areas subject to corrosive gas or dust. Product shall not be stored in areas exposed to direct sunlight.
- · Avoid rapid change of temperature.
- · Avoid condensation.
- · Mechanical stress such as vibration and impact shall be avoided.
- · The product shall not be placed directly on the floor.
- · The product shall be stored on a plane area. They should not be turned upside down.

They should not be placed against the wall.

Shelf Life of CDIL Products

The shelf life of products is the period from product manufacture to shipment to customers. The product can be unconditionally shipped within this period. The period is defined as 2 years.

If products are stored longer than the shelf life of 2 years the products shall be subjected to quality check as per CDIL quality procedure.

The products are further warranted for another one year after the date of shipment subject to the above conditions in CDIL original packing.

Floor Life of CDIL Products and MSL Level

When the products are opened from the original packing, the floor life will start.

For this, the following JEDEC table may be referred:

JEDEC MSL Level				
Level	Time	Condition		
1	Unlimited	≤30 °C / 85% RH		
2	1 Year	≤30 °C / 60% RH		
2a	4 Weeks	≤30 °C / 60% RH		
3	168 Hours	≤30 °C / 60% RH		
4	72 Hours	≤30 °C / 60% RH		
5	48 Hours	≤30 °C / 60% RH		
5a	24 Hours	≤30 °C / 60% RH		
6	Time on Label(TOL)	≤30 °C / 60% RH		

Customer Notes

Component Disposal Instructions

- 1. CDIL Semiconductor Devices are RoHS compliant, customers are requested to please dispose as per prevailing Environmental Legislation of their Country.
- 2. In Europe, please dispose as per EU Directive 2002/96/EC on Waste Electrical and Electronic Equipment (WEEE).

Disclaimer

The product information and the selection guides facilitate selection of the CDIL's Semiconductor Device(s) best suited for application in your product(s) as per your requirement. It is recommended that you completely review our Data Sheet(s) so as to confirm that the Device(s) meet functionality parameters for your application. The information furnished in the Data Sheet and on the CDIL Web Site/CD are believed to be accurate and reliable. CDIL however, does not assume responsibility for inaccuracies or incomplete information. Furthermore, CDIL does not assume liability whatsoever, arising out of the application or use of any CDIL product; neither does it convey any license under its patent rights nor rights of others. These products are not designed for use in life saving/support appliances or systems. CDIL customers selling these products (either as individual Semiconductor Devices or incorporated in their end products), in any life saving/support appliances or systems or applications do so at their own risk and CDIL will not be responsible for any damages resulting from such sale(s).

CDIL strives for continuous improvement and reserves the right to change the specifications of its products without prior notice.

CDIL is a registered trademark of

Continental Device India Pvt. Limited

C-120 Naraina Industrial Area, New Delhi 110 028, India.

Telephone +91-11-2579 6150, 4141 1112 Fax +91-11-2579 5290, 4141 1119

email@cdil.com www.cdil.com

CIN No. U32109DL1964PTC004291