

N-CHANNEL POWER MOSFET

- 1. Gate
- 2. Drain 3. Source

CDB1N45

TO-92 Plastic Package

Features

- 1) 100% Avalanche Tested
- 2) Typical $R_{DS(on)} = 4.1\Omega$
- 3) Extremely High dv/dt Capability
- 4) Gate Charge Minimized

Applications

- 1) Switch Mode Power Supplies (SMPS)
- 2) Low Power, Low Cost CFL (Compact Fluoroscent Lamps)
- 3) Low Power Battery Chargers

ABSOLUTE MAXIMUM RATINGS

PARAMETER	SYMBOL	VALUE	UNIT	
Drain - Source Voltage (V _{GS} =0)	$V_{ m DS}$	450	V	
Drain - Gate Voltage (R _{GS} =20kΩ)	V_{DGR}	450	V	
Gate - Source Voltage	V_{GS}	±30	V	
Continuous Drain Current at T _C = 25°C	I _D	0.5	Α	
Continuous Drain Current at T _C = 100°C	I _D	0.315	Α	
Pulsed Drain Current	* I _{DM}	2	Α	
Total Power Dissipation at T _C = 25°C	P _{TOT}	3.1	W	
Derating Factor		0.025	W/°C	
Peak Diode Recovery Voltage Slope	dv/dt ⁽¹⁾	3	V/ns	
Operating Junction and Storage Temperature Range	T _J , T _{STG}	-55 to +150	°C	

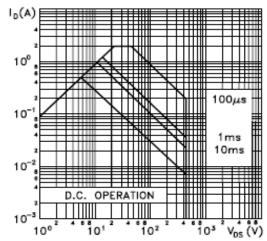
^{*} Pulse Width Limited by Safe Operating Area

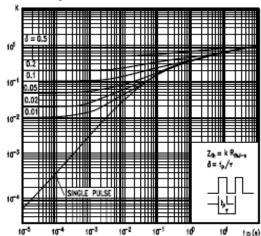
Note 1. - $I_{SD} \le 0.5A$, $di/dt \le 100A/\mu s$, $V_{DD} \le V_{(BR)DSS}$, $Tj \le Tjmax$

ELECTRICAL CHARACTERISTICS (T_c = 25°C Unless otherwise Specified)

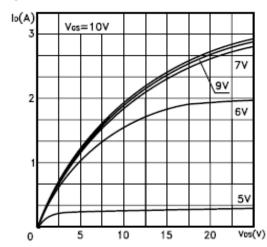
PARAMETER	SYMBOL	TEST CONDITION	MIN	TYP	MAX	UNIT
ON / OFF						
Drain - Source Breakdown Voltage	$V_{(BR)DSS}$	$V_{GS} = 0$, $I_D = 250 \mu A$	450			V
Zero Gate Voltage Drain Current	I _{DSS}	V_{DS} = Max Rating, V_{GS} = 0V			1	μΑ
		V_{DS} =Max Rating, V_{GS} =0V, T_{J} = 125°C			50	μΑ
Gate-Body Leakage Current	I _{GSS}	$V_{DS} = 0V, V_{GS} = \pm 30V$			±100	nA
Gate - Threshold Voltage	V _{GS (th)}	$V_{DS} = V_{GS_1} I_{D=250 \mu A}$	2.3	3	3.7	V
Static Drain - Source On -State Resistance	R _{DS(ON)}	$V_{GS} = 10V, I_D = 0.5A$		4.1	4.5	Ω
Dynamic Characteristics	. ,					
Forward Transconductance	gfs ⁽¹⁾	$V_{DS} > I_{D(ON)} X R_{DS(ON)MAX},$ $I_{D} = 0.5A$		1.1		S
Input Capacitance	Ciss	$V_{DS} = 25V$ $V_{GS} = 0$ $f = 1.0 \text{ MHz}$		160		pF
Output Capacitance	Coss			27.5		
Reverse Transfer Capacitance	Crss			4.7		
Switching Characteristics	1					
Total Gate Charge	Qg	V_{DS} = 360V, I_{D} = 1.5A, V_{GS} = 10V, R_{G} =4.7 Ω		7	10	
Gate - Source Charge	Qgs			1.3		nC
Gate - Drain Charge	Qgd	- 10V, NG-4.722		3.2		
Turn-on Delay Time	td(on)	V_{DD} =225V, I_{D} =0.5A, V_{GS} =10V, R_{G} =4.7 Ω , (Resistive Load, See Fig.3)		6.7		- ns
Rise Time	tr			4		
Off-Voltage Rise Time	$t_{r(Voff)}$	V_{DD} =360V, I_{D} =1.5A, V_{GS} =10V, R_{G} =4.7 Ω , (Inductive Load, See Fig.5)		8.5		ns
Fall Time	tf			12		
Cross-over Time	tc			18		
Source-Drain Diode Characteristics						
Source - Drain Current	I_{SD}				1.5	Α
Source - Drain Current (pulsed)	I _{SDM} (2)				6	Α
Forward On Voltage	V _{SD} ⁽¹⁾	$V_{GS} = 0$, $I_{SD} = 1.5A$			1.6	V
Reverse Recovery Time	t _{rr}	V _{DD} = 100V, I _{SD} = 1.5A,		225		ns
Reverse Recovery Charge	Q _{rr}	di/dt = 100A/μs, Τ _J =150°C,		530		nC
Reverse Recovery Current	I _{RRM}	(see test circuit, Fig.5)		4.7		Α

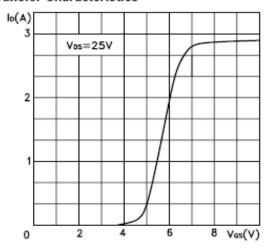
Notes:

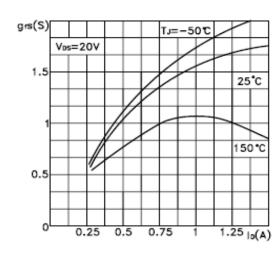

- 1) Pulse Duration = $300\mu s$, Duty Cycle = 1.5%
- 2) Pulse Width Limited by Safe Operating Area

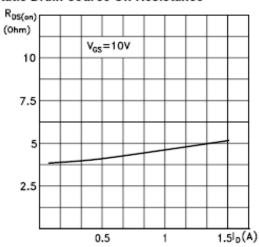


TYPICAL CHARACTERISTICS CURVES

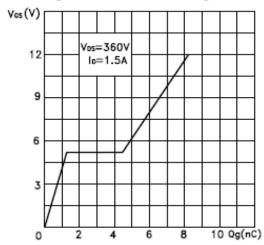

SafeOperatingArea

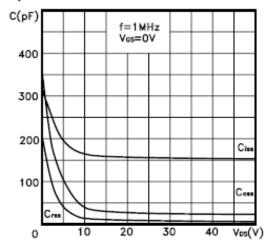

Thermallmpedance

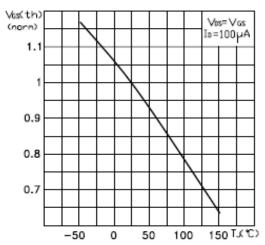

Output Characteristics

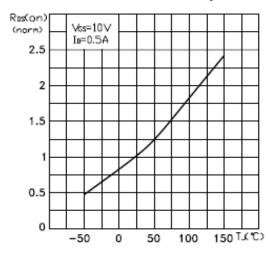

Transfer Characteristics

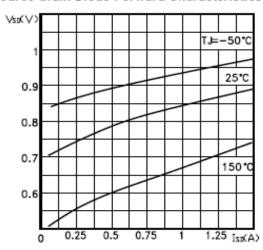
Transconductance

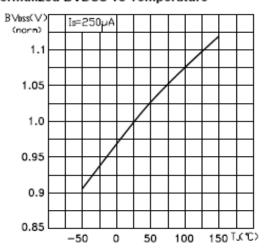

Static Drain-source On Resistance



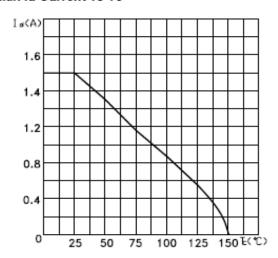

Gate Charge vs Gate-source Voltage

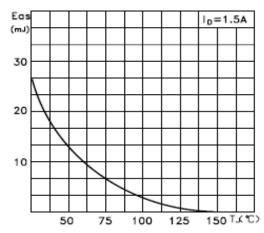

Capacitance Variations


Normalized Gate Threshold Voltage vs Temp.


Normalized On Resistance vs Temperature

Source-drain Diode Forward Characteristics


Normalized BVDSS vs Temperature



Max Id Current vs Tc

Maximum Avalanche Energy vs Temperature

TEST CIRCUITS AND WAVEFORMS

Fig. 1: Unclamped Inductive Load Test Circuit

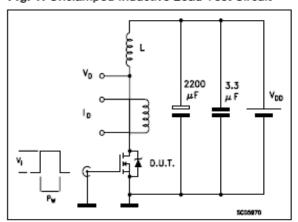


Fig. 3: Switching Times Test Circuit For

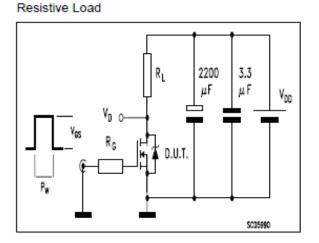


Fig. 5: Test Circuit ForInductive Load Switching And Diode Recovery Times

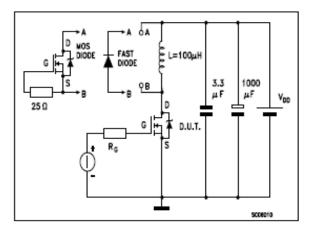
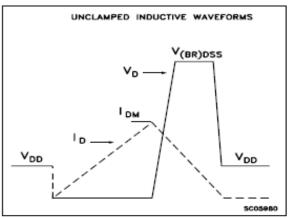
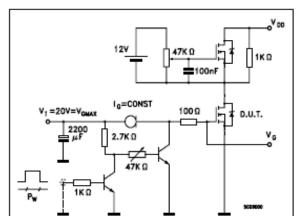
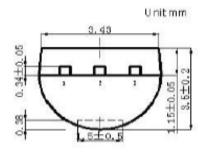
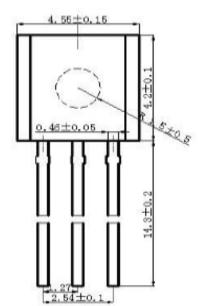


Fig. 2: Unclamped Inductive Waveform


Fig. 4: Gate Charge test Circuit



TO-92 PACKAGE OUTLINE AND DIMENSIONS

- 1. Gate
- 2. Drain
- 3. Source

DISCLAIMER

The product information and the selection guides facilitate selection of the CDIL's Discrete Semiconductor Device(s) best suited for application in your product(s) as per your requirement. It is recommended that you completely review our Data Sheet(s) so as to confirm that the Device(s) meet functionality parameters for your application. The information furnished in the Data Sheet and on the CDIL Web Site/CD are believed to be accurate and reliable. CDIL however, does not assume responsibility for inaccuracies or incomplete information. Furthermore, CDIL does not assume liability whatsoever, arising out of the application or use of any CDIL product; neither does it convey any license under its patent rights nor rights of others. These products are not designed for use in life saving/support appliances or systems. CDIL customers selling these products (either as individual Discrete Semiconductor Devices or incorporated in their end products), in any life saving/support appliances or systems or applications do so at their own risk and CDIL will not be responsible for any damages resulting from such sale(s).

CDIL strives for continuous improvement and reserves the right to change the specifications of its products without prior notice.

CDIL is a registered Trademark of
Continental Device India Pvt. Limited

C-120 Naraina Industrial Area, New Delhi 110 028, India.

Telephone + 91-11-2579 6150, 4141 1112 Fax + 91-11-2579 5290, 4141 1119

e-mail sales@cdil.com www.cdil.com

CIN No. U32109DL1964PTC004291