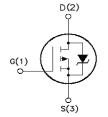


Continental Device India Pvt. Limited

An ISO/TS 16949, ISO 9001 and ISO 14001 Certified Company



SURFACE MOUNT PNP POWER MOSFET

Pin Confugration

- 1. Gate
- 2. Drain
- 3. Source

CDD10P06

TO-252 (DPAK)

Surface Mount Plastic Package

Features

- 1. TYPICAL $R_{DS(on)} = 0.18\Omega$
- 2. EXCEPTIONAL dv/dt CAPABILITY
- 3. 100% AVALANCHE TESTED
- 4. LOW GATE CHARGE
- 5. APPLICATION ORIENTED CHARCTERIZATION

Description

This Power MOSFET shows extremely high packing density for low on-resistance, rugged avalanche characteristics and less critical alignment.

Applications

MOTOR CONTROL
DC-DC & DC-AC CONVERTERS

Maximum Ratings (Ta=25°C unless otherwise specified)

DESCRIPTION	SYMBOL	VALUE	UNIT
Drain-Source Voltage (V _{GS} = 0)	V_{DS}	60	V
Drain-Gate Voltage (R_{GS} = 20 kΩ)	V_{DGR}	60	V
Gate-Source Voltage	V_{GS}	± 20	V
Drain Current (continuous) at T _C = 25°C		10	_
Drain Current (continuous) at T _C = 100°C	I _D	7	Α
Drain Current (pulsed)	$I_{DM}^{(*)}$	40	Α
Total Dissipation at T _C = 25°C	P_{tot}	40	W
Derating Factor		0.27	W/°C
Peak Diode Recovery Voltage slope	dv/dt (1)	6	V/ns
Storage Temperature	T_{sta}	-65 to 175	°C
Max. Operating Junction Temperature	T_J	175	°C

Notes:

- 1. (*) Pulse width limited by safe operating area.
- 2. P-CHANNEL MOSFET actual polarity of voltages and current has to be reversed.
- 3.(1) $I_{SD} \le 10A$, di/dt $\le 300A/\mu s$, $V_{DD} \le V_{(BR)DSS}$, $T_i \le T_J MAX$

Thermal Characteristics

DESCRIPTION	SYMBOL	VALUE	UNIT
Thermal Resistance Junction-case	R _{thj-case}	3.75 Max	°C/W
Thermal Resistance Junction-ambient	R _{thj-amb}	100 Max	°C/W
Maximum Lead Temperature For Soldering Purpose	T _I	275	°C

Continental Device India Pvt. Limited

Electrical Characteristics (T_J=25°C unless otherwise specified) AVALANCHE CHARACTERISTICS

Symbol	Parameter	Max Value	Unit
I _{AR}	Avalanche Current, Repetitive or Not-Repetitive (pulse width limited by T _j max)	10	Α
E _{AS}	Single Pulse Avalanche Energy (starting T _j = 25 °C, I _D = I _{AR} , V _{DD} = 25 V)	125	mJ

ELECTRICAL CHARACTERISTICS (T_{CASE} = 25 °C UNLESS OTHERWISE SPECIFIED)

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
V _{(BR)DSS}	Drain-source Breakdown Voltage	I _D = 250 μA, V _{GS} = 0	60			٧
IDSS	Zero Gate Voltage Drain Current (V _{GS} = 0)	V _{DS} = Max Rating V _{DS} = Max Rating T _C = 125°C			1 10	μA μA
I _{GSS}	Gate-body Leakage Current (V _{DS} = 0)	V _{GS} = ± 20V			±1	μА

ON (*)

Symbol	Parameter	Test Co	onditions	Min.	Тур.	Max.	Unit
V _{GS(th)}	Gate Threshold Voltage	$V_{DS} = V_{GS}$	$I_D = 250 \mu A$	2		4	٧
R _{DS(on)}	Static Drain-source On Resistance	V _{GS} = 10 V	I _D = 5 A		0.18	0.20	Ω

DYNAMIC

Symbol	Parameter	Test Cond	litions	Min.	Тур.	Max.	Unit
gfs (*)	Forward Transconductance	V _{DS} = 25 V	I _D =5 A	2	5		S
C _{iss} C _{oss} C _{rss}	Input Capacitance Output Capacitance Reverse Transfer Capacitance	V _{DS} = 25 V f = 1	MHz V _{GS} = 0		850 230 75		pF pF pF

CDD10P06 REV_0 19012018EJS Continental Device India Pvt. Limited

Continental Device India Pvt. Limited

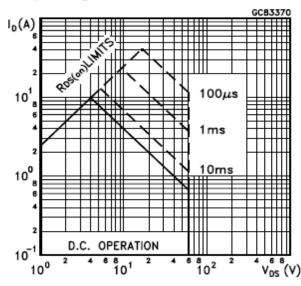
Electrical Characteristics (Continued).....

SWITCHING ON

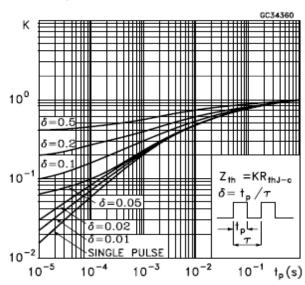
Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
t _{d(on)}	Turn-on Delay Time Rise Time	$\begin{array}{ccc} V_{DD} = 30 \text{ V} & I_D = 5 \text{ A} \\ R_G = 4.7 \; \Omega & V_{GS} = 10 \text{ V} \\ \text{(Resistive Load, Figure 3)} \end{array}$		20 40		ns ns
Q _g Q _{gs} Q _{gd}	Total Gate Charge Gate-Source Charge Gate-Drain Charge	V _{DD} = 48 V I _D = 10 A V _{GS} = 10 V		16 4 6	21	nC nC nC

SWITCHING OFF

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
t _{d(off)} t _f	Turn-off Delay Time Fall Time	V_{DD} = 30 V I_{D} = 5 A R_{G} = 4.7 Ω , V_{GS} = 10 V (Resistive Load, Figure 3)		40 10		ns ns
t _{r(∨off)} t _f t _c	Off-voltage Rise Time Fall Time Cross-over Time	V_{clamp} = 48 V I_{D} = 10 A R _G = 4.7 Ω , V_{GS} = 10 V (Inductive Load, Figure 5)		10 17 30		ns ns ns


SOURCE DRAIN DIODE

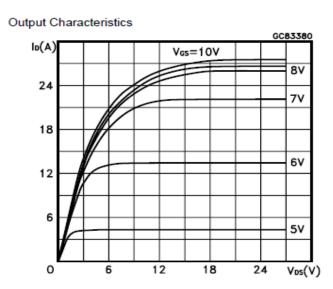
Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
ISD ISDM (●)	Source-drain Current Source-drain Current (pulsed)				10 40	A A
V _{SD} (*)	Forward On Voltage	I _{SD} = 10 A V _{GS} = 0			2.5	٧
t _{rr} Q _{rr} I _{RRM}	Reverse Recovery Time Reverse Recovery Charge Reverse Recovery Current	I_{SD} = 10 A di/dt = 100A/ μ s V_{DD} = 30 V T_j = 150°C (see test circuit, Figure 5)		100 260 5.2		ns μC A

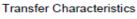

^(*)Pulsed: Pulse duration = 300 µs, duty cycle 1.5 %.

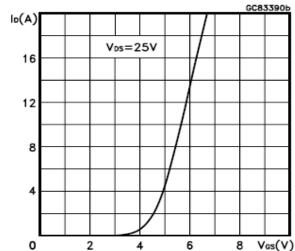
Typical Electrical And Thermal Characteristics

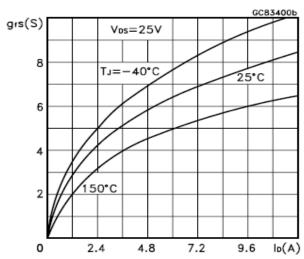
Safe Operating Area

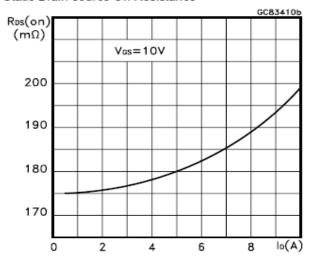
Thermal Impedance

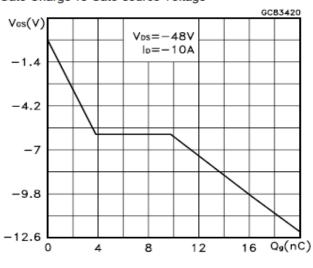


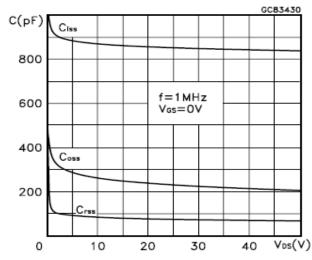

^(•)Pulse width limited by safe operating area.




Typical Electrical And Thermal Characteristics (Cont.)

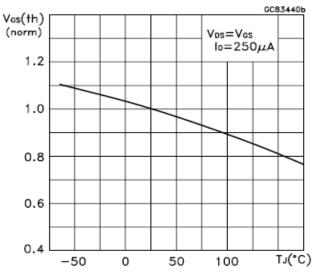


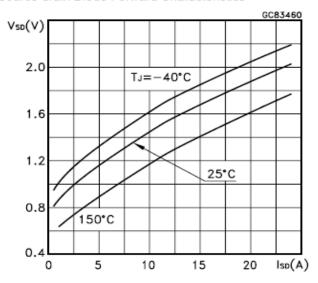

Transconductance


Static Drain-source On Resistance

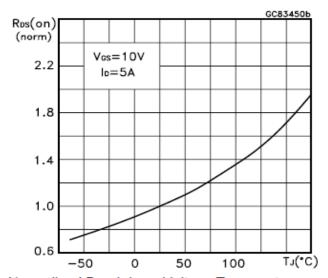
Gate Charge vs Gate-source Voltage

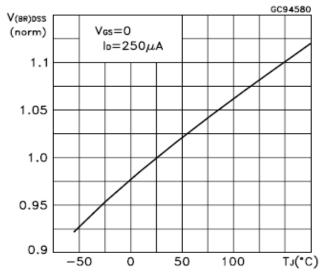
Capacitance Variations


Continental Device India Pvt. Limited An ISO/TS 16949, ISO 9001 and ISO 14001 Certified Company



Typical Electrical And Thermal Characteristics (Cont.)


Normalized Gate Threshold Voltage vs Temperature


Source-drain Diode Forward Characteristics

Normalized on Resistance vs Temperature

Normalized Breakdown Voltage Temperature

TEST CIRCUITS

Fig. 1: Unclamped Inductive Load Test Circuit

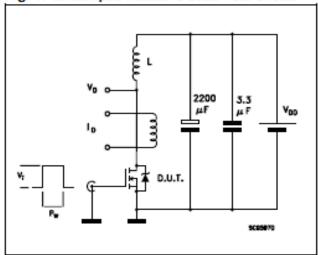


Fig. 3: Switching Times Test Circuits For Resistive Load

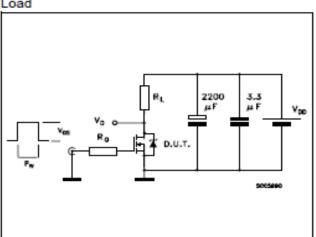


Fig. 5: Test Circuit For Inductive Load Switching And Diode Recovery Times

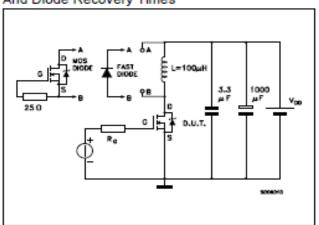
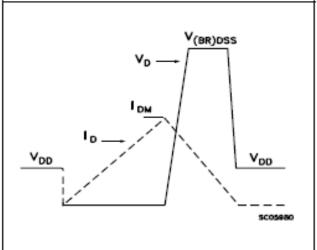
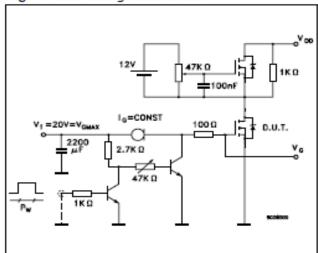
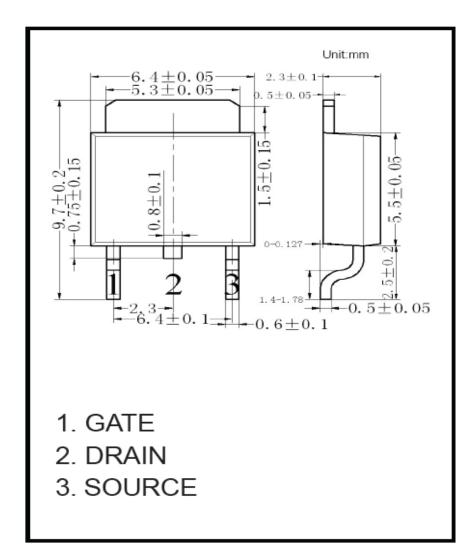


Fig. 2: Unclamped Inductive Waveform


Fig. 4: Gate Charge test Circuit

Continental Device India Pvt. Limited An ISO/TS 16949, ISO 9001 and ISO 14001 Certified Company

Package dimensions

Continental Device India Pvt. Limited An ISO/TS 16949, ISO 9001 and ISO 14001 Certified Company

Customer Notes

Component Disposal Instructions

- 1. CDIL Semiconductor Devices are RoHS compliant, customers are requested to please dispose as per prevailing Environmental Legislation of their Country.
- 2. In Europe, please dispose as per EU Directive 2002/96/EC on Waste Electrical and Electronic Equipment (WEEE).

Disclaimer

The product information and the selection guides facilitate selection of the CDIL's Semiconductor Device(s) best suited for application in you product(s) as per your requirement. It is recommended that you completely review our Data Sheet(s) so as to confirm that the Device(s) mee functionality parameters for your application. The information furnished on the CDIL Web Site/CD are believed to be accurate and reliable. CDIL however, does not assume responsibility for inaccuracies or incomplete information. Furthermore, CDIL does not assume liability whatsoever arising out of the application or use of any CDIL product; neither does it convey any license under its patent rights nor rights of others. These products are not designed for use in life saving/support appliances or systems. CDIL customers selling these products (either as individua Semiconductor Devices or incorporated in their end products), in any life saving/support appliances or systems or applications do so at their owr risk and CDIL will not be responsible for any damages resulting from such sale(s).

CDIL is a registered Trademark of Continental Device India Pvt.Limited

C-120 Naraina Industrial Area, New Delhi 110 028, India.

Telephone + 91-11-2579 6150, 4141 1112 Fax + 91-11-2579 5290, 4141 1119

email@cdil.com www.cdil.com

CIN No. - U32109DL1964PTC004291

CDD10P06 REV_0 19012018EJS Continental Device India Pvt. Limited

Data Sheet

Page 8 of 8