

NPN/PNP PLASTIC POWER TRANSISTORS

TO-126

PNP CSB649 CSB649A NPN CSD669 CSD669A

TO-126 Leaded Plastic Package RoHS compliant

FEATURES:

1. This product is available in AEC-Q101 Compliant and PPAP Capable also.

Note: For AEC-Q101 compliant products, please use suffix -AQ in the part number while ordering.

APPLICATIONS: Low frequency Power Amplifier

ABSOLUTE MAXIMUM RATINGS (Ta = 25 °C Unless otherwise specified)

PARAMETER	SYMBOL	649 669	649A 669A	UNIT
Collector-base voltage (open emitter)	V_{CBO}	180	180	V
Collector-emitter voltage (open base)	V_{CEO}	160	160	V
Collector current	I _C	1	.5	Α
Total power dissipation up to T _C = 25°C	P _C	2	20	W
Junction temperature	T _j	1	50	°C
Emitter-base voltage (open collector)	V_{EBO}	5	.0	V
Collector current (peak)	I _{CP}	3	.0	Α
Total power dissipation up to T _A = 25°C	P _C	1	.0	W
Storage temperature	T _{stg}	65 to	+150	°C

ELECTRICAL CHARACTERISTICS ($T_A = 25^{\circ}C$; unless otherwise specified

PARAMETER	SYMBOL	TEST CONDI	TION		649 669	649A 669A	Unit
Collector cutoff current	I _{CBO}	$I_E = 0; V_{CB} = 1$	160V	Max	10	10	μA
	V	$I_C = 10 \text{mA}; I_B$	= 0	Max	120	160	V
Breakdown voltages	V_{CEO}	$I_C = 1mA; I_E$	= 0	Max	180	180	V
	V_{EBO}	$I_E = 1mA; I_C$	= 0	Max	5.0	5.0	V
Saturation voltage	V_{CEsat}	$I_{\rm C} = 500 \rm mA; I_{\rm B} = 50 \rm mA$		Max	1.0	1.0	V
Base-emitter voltage	$V_{BE(on)}$	$I_C = 150 \text{mA}; V_C$	_E = 5V	Max	1.5	1.5	V
	Ь	l = 150mΔ·\/	- 5\/	Min	60	60	
D.C. current gain	h _{FE}	$I_C = 150 \text{mA}; V_C$	_E – 3V	Max	320	200	
	h _{FE}	$I_C = 500 \text{mA}; V_C$	_E = 5V	Min	30	30	
Transition frequency	f _⊤	$I_{\rm C}$ = 150mA; $V_{\rm CE}$ = 5V		Тур	140	140	MHz
Output conscitones	-	V _{CB} = 10 V;	PNP	Тур	27	27	pF
Output capacitance	C _{ob}	$I_{\rm F} = 0$; f = 1 MHz	NPN	Тур	14	14	pF

Classification of h_{FE}

Rank	R	Q	Р	Е
Range	60 to 120	100 to 200	160 to 320	200 to 400

Note:

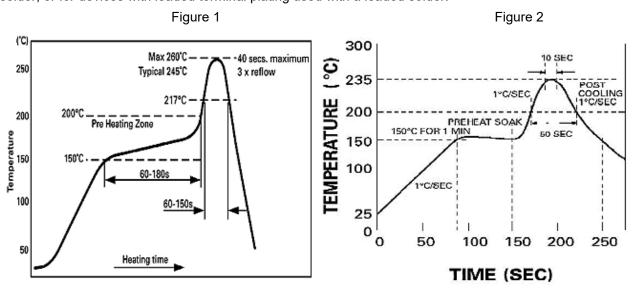
 $1.h_{FE}$ classification:

Non A

B 60 - 120	C 100 - 200	D 160-320
Α		
B 60 - 120	C 100 - 200	

- 2. Pulse test
- 3. For PNP device voltage and current values will be negative (-).

CSB649_CSD669A Rev01_ 12082022E



Recommended Reflow Solder Profiles

The recommended reflow solder profiles for Pb and Pb-free devices are shown below.

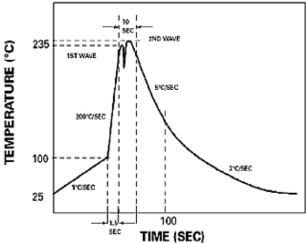
Figure 1 shows the recommended solder profile for devices that have Pb-free terminal plating, and where a Pb-free solder is used.

Figure 2 shows the recommended solder profile for devices with Pb-free terminal plating used with leaded solder, or for devices with leaded terminal plating used with a leaded solder.

Reflow profiles in tabular form

Profile Feature	Sn-Pb System	Pb-Free System
Average Ramp-Up Rate	~3°C/second	~3°C/second
Preheat – Temperature Range – Time	150-170°C 60-180 seconds	150-200°C 60-180 seconds
Time maintained above: – Temperature – Tim	200°C 30-50 seconds	217°C 60-150 seconds
Peak Temperature	235°C	260°C max.
Time within +0 -5°C of actual Peak	10 seconds	40 seconds
Ramp-Down Rate	3°C/second max.	6°C/second max

CSB649_CSD669A Rev01 12082022E



Recommended Wave Solder Profiles

with Pb-free terminal plating where a Pb-free solder is used

The Recommended solder Profile For Devices The Recommended solder Profile For Devices with Pb-free terminal plating used with leaded solder, or for devices with leaded terminal plating used with leaded solder

Wave Profiles in Tabular Form

Profile Feature	Sn-Pb System	Pb-free System	
Average Ramp-Up Rate	~200°C/second	~200°C/second	
Heating rate during preheat	Typical 1-2, Max 4°C/sec	Typical 1-2, Max 4°C/Sec	
Final preheat Temperature	Within 125°C of Solder Temp	Within 125°C of Solder Temp	
Peak Temperature	235°C	260°C max.	
Time within +0 -5°C of actual Peak	10 seconds	10 seconds	
Ramp-Down Rate	5°C/second max.	5°C/second max.	

TYPICAL CHARACTERISTICS CURVES

Fig. 1. Maximum Collector Dissipation

30

4

50

10

50

100

150

Case temperature To (°C)

Case temperature T_C (°C) Fig.2. Typical Output Characteristics

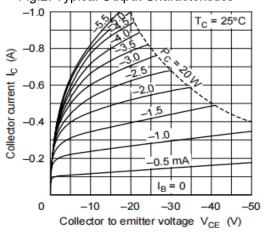


Fig.3.Area of Safe Operation

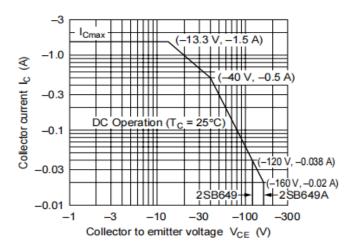


Fig. 4. Typical Transfer Characteristics

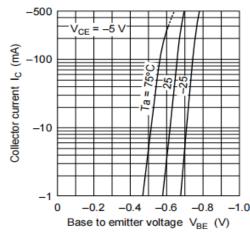


Fig. 5. DC Current Transfer Ratios vs. Collector Current

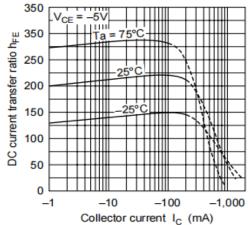
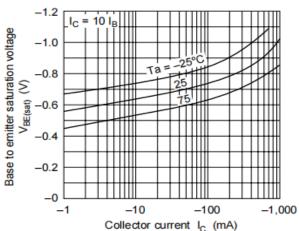



Fig.6. Base to Emitter Saturation Voltage vs. Collector Current

CSB649_CSD669A Rev01_ 12082022E

TYPICAL CHARACTERISTICS CURVES

Fig. 7. Gain Bandwidth Product vs. Collector Current

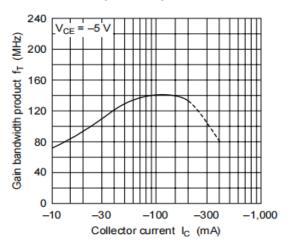
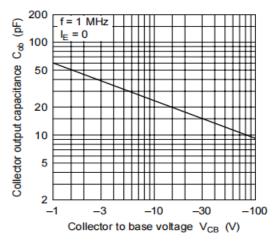
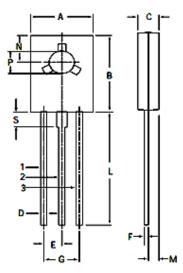



Fig. 8. Gain Bandwidth Product vs. Collector Current



Package Details

TO-126 Leaded Plastic Package

DIM	MIN	MAX	
Α	7.4	7.8	
В	10.5	10.8	
С	2.4	2.7	
D	0.7	0.9	
Е	2.25 T	ΥP	
F	0.49		
G	4.5 TY	Έ	
L	15.7 T	ΥP	
М	1.27 T	ΥP	
Ν	3.75 TYP		
Р	3.0	3.2	
S	25 TYP		

All Dimensions are in Millimeter (Inches)

PIN CONFIGURATION

- 1. Emitter
- 2. Collector
- 3. Base

Recommended Product Storage Environment for Discrete Semiconductor Devices

This storage environment assumes that the Diodes and transistors are packed properly inside the original packing supplied by CDIL.

- · Temperature 5 °C to 30 °C
- · Humidity between 40 to 70 %RH
- · Air should be clean.
- · Avoid harmful gas or dust.
- · Avoid outdoor exposure or storage in areas subject to rain or water spraying .
- · Avoid storage in areas subject to corrosive gas or dust. Product shall not be stored in areas exposed to direct sunlight.
- · Avoid rapid change of temperature.
- · Avoid condensation.
- · Mechanical stress such as vibration and impact shall be avoided.
- · The product shall not be placed directly on the floor.
- · The product shall be stored on a plane area. They should not be turned upside down. They should not be placed against the wall.

Shelf Life of CDIL Products

The shelf life of products is the period from product manufacture to shipment to customers. The product can be unconditionally shipped within this period. The period is defined as 2 years.

If products are stored longer than the shelf life of 2 years the products shall be subjected to quality check as per CDIL quality procedure.

The products are further warranted for another one year after the date of shipment subject to the above conditions in CDIL original packing.

Floor Life of CDIL Products and MSL Level

When the products are opened from the original packing, the floor life will start.

For this, the following JEDEC table may be referred:

JEDEC MSL Level			
Level	Time	Condition	
1	Unlimited	≤30 °C / 85% RH	
2	1 Year	≤30 °C / 60% RH	
2a	4 Weeks	≤30 °C / 60% RH	
3	168 Hours	≤30 °C / 60% RH	
4	72 Hours	≤30 °C / 60% RH	
5	48 Hours	≤30 °C / 60% RH	
5a	24 Hours	≤30 °C / 60% RH	
6	Time on Label(TOL)	≤30 °C / 60% RH	

Customer Notes

Component Disposal Instructions

- 1. CDIL Semiconductor Devices are RoHS compliant, customers are requested to please dispose as per prevailing Environmental Legislation of their Country.
- 2. In Europe, please dispose as per EU Directive 2002/96/EC on Waste Electrical and Electronic Equipment (WEEE).

Disclaimer

The product information and the selection guides facilitate selection of the Coil's Semiconductor Device(s) best suited for application in your product(s) as per your requirement. It is recommended that you completely review our Data Sheet(s) so as to confirm that the Device(s) meet functionality parameters for your application. The information furnished in the Data Sheet and on the CDIL Web Site/CD are believed to be accurate and reliable. CDIL however, does not assume responsibility for inaccuracies or incomplete information. Furthermore, CDIL does not assume liability whatsoever, arising out of the application or use of any CDIL product; neither does it convey any license under its patent rights nor rights of others. These products are not designed for use in life saving/support appliances or systems. CDIL customers selling these products (either as individual Semiconductor Devices or incorporated in their end products), in any life saving/support appliances or systems or applications do so at their own risk and CDIL will not be responsible for any damages resulting from such sale(s).

CDIL strives for continuous improvement and reserves the right to change the specifications of its products without prior notice.

CDIL is a registered trademark of
Continental Device India Pvt. Limited
C-120 Narration Industrial Area, New Delhi 110 028, India.
Telephone +91-11-2579 6150, 4141 1112 Fax +91-11-2579 5290, 4141 1119
email@cdil.com www.cdil.com
CIN No. U32109DL1964PTC004291

CSB649_CSD669A Rev01 12082022E