

SINGLE-PHASE GLASS PASSIVATED BRIDGE RECTIFIER

FORWARD CURRENT: 3Amp, REVERSE VOLTAGE - 50 to 1000 Volts

KBP3005 - KBP310

Package: KBP RoHS compliant

KBP

FEATURES:

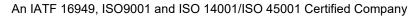
- 1. Reliable low cost construction utilizing molded plastic technique
- 2. Glass passivated chip junction
- 3. Ideal for printed circuit board
- 4. Low forward voltage drop
- 5. Low reverse leakage current
- 6. High surge current capability
- 7.. This product is available in AEC-Q101 Compliant and PPAP Capable also.

Note: For AEC-Q101 compliant products, please use suffix -AQ in the part number while ordering.

ABSOLUTE MAXIMUM RATINGS ELECTRICALCHARACTERISTICS

Rating at 25°C ambient temperature unless otherwise specified. Single phase, half wave ,60Hz, resistive or inductive load. For capacitive load, derate current by 20%

PARAMETERS	SYMBOL	KBP 3005	KBP 301	KBP 302	KBP 304	KBP 306	KBP 308	KBP 310	UNIT
Maximum Recurrent Peak Reverse Voltage	V_{RRM}	50	100	200	400	600	800	1000	V
Maximum RMS Bridge Input Voltage	V_{RMS}	35	70	140	280	420	560	700	V
Maximum DC Blocking Voltage	V_{DC}	50	100	200	400	600	800	1000	V
Maximum Average Forward Output Current at .375"(9.5mm) Lead Length at 50°C T _A ¹	I _(AV)		-	-	3.0	-	-	-	Α
Peak Forward Surge Current 8.3ms Single Half Sine- Wave superimposed on rated load (JEDEC method)	I _{FSM}				80				Α
Maximum Forward Voltage At 3.0A DC and25 °C	V_{F}				1.1				V
Maximum DC Reverse Current at Rated DC T _A 25°C					10				
Blocking Voltage T _A 125%					500				μA
Typical Junction Capacitance ¹	CJ				25				pF
Typical Thermal Resistance ²	$R_{\theta JA}$				30				°C/W
Typical Thermal Resistance ²	$R_{ heta JL}$				11				°C/W
Operating and Storage Temperature Range	T_J , T_{stg}			-5	5 to +1	50			°C


Notes: 1- Measured at 1 MHZ and applied reverse voltage of 4.0 VDC.

2- Thermal Resistance Junction to Ambient and form junction to lead at 0.375"(9.5mm) lead length P.C.B. Mounted.

KBP3005-KBP310 Rev2 11032024SW

Continental Device India Pvt. Limited

Typical Characteristic curves

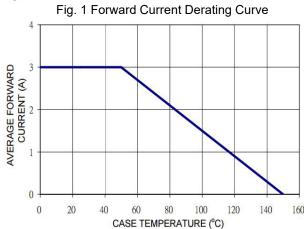


Fig. 2 Maximum Non-repetitive Forward surge Current

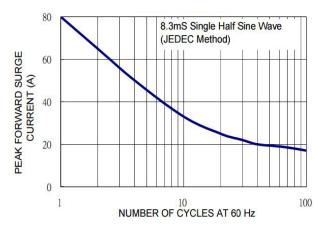
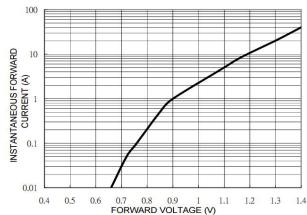


Fig. 3 Typical Reverse Characteristics

1000

TA=125°C

TA=25°C

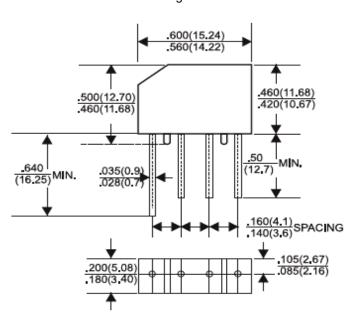

1000

TA=25°C

O 20 40 60 80 100 120 140

PERCENT OF RATED PEAK REVERSE VOLTAGE (%)

Fig. 4 Typical Forward Characteristics



Package Details

Package:KBP

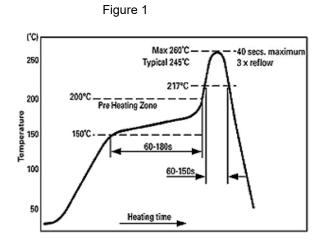
Dimensions in inches and (millimeters)

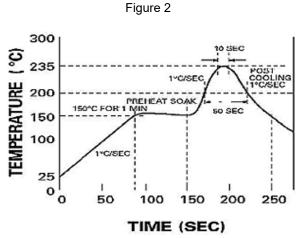
MECHANICAL DATA

- 1. Case: Molded plastic, KBP
- 2. Epoxy: UL 94V-O rate flame retardant
- 3. Terminals: Pure tin plated, lead free, Leads Solderable

per MIL-STD-202, method 208 guaranteed

- 4. Mounting position: As Marking
- 5. Weight: 1.456 gram




Recommended Reflow Solder Profiles

The recommended reflow solder profiles for Pb and Pb-free devices are shown below.

Figure 1 shows the recommended solder profile for devices that have Pb-free terminal plating, and where a Pb-free solder is used.

Figure 2 shows the recommended solder profile for devices with Pb-free terminal plating used with leaded solder, or for devices with leaded terminal plating used with a leaded solder.

Reflow profiles in tabular form

Profile Feature	Sn-Pb System	Pb-Free System		
Average Ramp-Up Rate	~3°C/second	~3°C/second		
Preheat – Temperature Range – Time	150-170°C 60-180 seconds	150-200°C 60-180 seconds		
Time maintained above: – Temperature – Time	200°C 30-50 seconds	217°C 60-150 seconds		
Peak Temperature	235°C	260°C max.		
Time within +0 -5°C of actual Peak	10 seconds	40 seconds		
Ramp-Down Rate	3°C/second max.	6°C/second max.		

KBP3005-KBP310 Rev2 11032024SW

An IATF 16949, ISO9001 and ISO 14001/ISO 45001 Certified Company

Recommended Wave Solder Profiles

The Recommended solder Profile For Devices with Pb-free terminal plating where a Pb-free solder is used

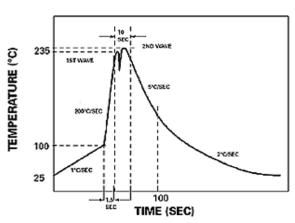
280

15T WAVE

15T WAVE

250 280

15T WAVE


250 280

270/SEC

270/SEC

TIME (SEC)

The Recommended solder Profile For Devices with Pb-free terminal plating used with leaded solder, or for devices with leaded terminal plating used with leaded solder

Wave Profiles in Tabular Form

Profile Feature	Sn-Pb System	Pb-Free System		
Average Ramp-Up Rate	~200°C/second	~200°C/second		
Heating rate during preheat	Typical 1-2, Max 4°C/sec	Typical 1-2, Max 4°C/Sec		
Final preheat Temperature	Within 125°C of Solder Temp	Within 125°C of Solder Temp		
Peak Temperature	235°C	260°C max.		
Time within +0 -5°C of actual Peak	10 seconds	10 seconds		
Ramp-Down Rate	5°C/second max.	5°C/second max		

Recommended Product Storage Environment for Discrete Semiconductor Devices

This storage environment assumes that the Diodes and transistors are packed properly inside the original packing supplied by CDIL.

- · Temperature 5 °C to 30 °C
- · Humidity between 40 to 70 %RH
- · Air should be clean.
- · Avoid harmful gas or dust.
- · Avoid outdoor exposure or storage in areas subject to rain or water spraying .
- · Avoid storage in areas subject to corrosive gas or dust. Product shall not be stored in areas exposed to direct sunlight.
- · Avoid rapid change of temperature.
- · Avoid condensation.
- · Mechanical stress such as vibration and impact shall be avoided.
- · The product shall not be placed directly on the floor.
- The product shall be stored on a plane area. They should not be turned upside down. They should not be placed against the wall.

Shelf Life of CDIL Products

The shelf life of products is the period from product manufacture to shipment to customers. The product can be unconditionally shipped within this period. The period is defined as 2 years.

If products are stored longer than the shelf life of 2 years the products shall be subjected to quality check as per CDIL quality procedure.

The products are further warranted for another one year after the date of shipment subject to the above conditions in CDIL original packing.

Floor Life of CDIL Products and MSL Level

When the products are opened from the original packing, the floor life will start.

For this, the following JEDEC table may be referred:

JEDEC MSL Level			
Level	Time	Condition	
1	Unlimited	≤30 °C / 85% RH	
2	1 Year	≤30 °C / 60% RH	
2a	4 Weeks	≤30 °C / 60% RH	
3	168 Hours	≤30 °C / 60% RH	
4	72 Hours	≤30 °C / 60% RH	
5	48 Hours	≤30 °C / 60% RH	
5a	24 Hours	≤30 °C / 60% RH	
6	Time on Label(TOL)	≤30 °C / 60% RH	

Customer Notes

Component Disposal Instructions

- 1. CDIL Semiconductor Devices are RoHS compliant, customers are requested to please dispose as per prevailing Environmental Legislation of their Country.
- 2. In Europe, please dispose as per EU Directive 2002/96/EC on Waste Electrical and Electronic Equipment (WEEE).

Disclaimer

The product information and the selection guides facilitate selection of the CDIL's Semiconductor Device(s) best suited for application in your product(s) as per your requirement. It is recommended that you completely review our Data Sheet(s) so as to confirm that the Device(s) meet functionality parameters for your application. The information furnished in the Data Sheet and on the CDIL Web Site/CD are believed to be accurate and reliable. CDIL however, does not assume responsibility for inaccuracies or incomplete information. Furthermore, CDIL does not assume liability whatsoever, arising out of the application or use of any CDIL product; neither does it convey any license under its patent rights nor rights of others. These products are not designed for use in life saving/support appliances or systems. CDIL customers selling these products (either as individual Semiconductor Devices or incorporated in their end products), in any life saving/support appliances or systems or applications do so at their own risk and CDIL will not be responsible for any damages resulting from such sale(s).

CDIL strives for continuous improvement and reserves the right to change the specifications of its products without prior notice.

CDIL is a registered trademark of

Continental Device India Pvt. Limited

KBP3005-KBP310 Rev2 11032024SW