

An IATF 16949, ISO9001 and ISO 14001 Certified Company

NPN DARLINGTON POWER TRANSISTOR

2N6386 2N6387 2N6388

TO-220 Plastic Package RoHS compliant

FEATURES

- 1. NPN Darlington transistors from 8 to 10 Amp,40 to 80 Volts, 65Watts.
- 2. Collector-Emitter Sustaining Voltage

 $V_{CEO(SUS)} = 40V(Min.) 2N6386$

 $V_{CEO(SUS)} = 60V(Min.) 2N6387$

 $V_{CEO(SUS)} = 80V(Min.) 2N6388$

3. Collector-Emitter Saturation Voltage

 $V_{CE(SAT)} = 2.0(Max.) @I_C = 3.0A 2N6386$

 $V_{CE(SAT)} = 2.0(Max.) @I_C = 5.0A 2N6387,2N6388$

- 4. DC gain $h_{EE} = 2000 \text{ (Typ.)} @ I_C = 4.0 \text{ A}$
- 5. Complementry to 2N6666, 2N6667,2N66668

APPLICATIONS:

General purpose amplifier and low speed switching.

ABSOLUTE MAXIMUM RATINGS ($T_a = 25 °C$)

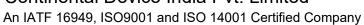
Parameter	Symbol	2N6386	2N6387	2N6388	Unit
Collector-Base Voltage	V_{CBO}	40	60	80	V
Collector-Emitter Voltage	V_{CEO}	40	60	80	V
Emitter-Base Voltage	V_{EBO}	5.0			V
Collector Current-continouse	I _C	8.00	10	10	Α
Collector Current-Peak	I _{CM}	15.00		_ ^	
Base Current	l _B	0.25		Α	
Total Power Dissipation @TC= 25 ℃			65.0		W
Total Power Dissipation Derate above @TC= 25 ℃	P _D	0.52		W	
Storage Temperature	$T_{J,}T_{stg}$	-65 to +150		°C	

THERMAL CHARACTERISTICS

Parameter	Symbol	Value (Max.)	Unit
Thermal Resistance Junction to Case	$R_{\theta ic}$	1.92	°C/W

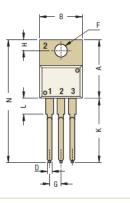
2N6386,2N6387,2N6388 Ü^çFÆT €FŒŒÒT

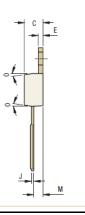
An IATF 16949, ISO9001 and ISO 14001 Certified Company


ELECTRICAL CHARACTERISTICS at T_a = 25 °C unless otherwise specified

Danamatan			Value		11		
Parameter	Symbol	Test Conditions	Min.	Тур.	Max.	Unit	
OFF CHARACTERISTICS							
Collector Cut-off Current	_						
2N6386	-	VCE= 40V, IB=0			1	-	
2N6387	0_0	VCE= 60V, IB=0			1	mA	
2N6388		VCE= 80V, IB=0			1		
2N6386	1	$V_{CE} = 40V, V_{BE(OFF)} = 1.5V$			0.3		
2N6387	OL/($V_{CE} = 60V, V_{BE(OFF)} = 1.5V$			0.3		
2N6388		$V_{CE} = 80V, V_{BE(OFF)} = 1.5V$			0.3	mΑ	
2N6386	I _{CEX}	$V_{CE} = 40V, V_{BE(OFF)} = 1.5V$			3		
2N6387 2N6388	@40E°O	$V_{CE} = 60V, V_{BE(OFF)} = 1.5V$			3		
Emitter Cut-off Current		$V_{CE} = 80V, V_{BE(OFF)} = 1.5V$			5		
	I _{EBO}	V_{EB} = -5V, I_{C} =0			ວ	mA	
Collector-Emitter Sustaining Voltage ⁽¹⁾	1		40	1	1	i -	
2N6386	4	IC- 200 A ID-0	40			.,	
2N6387 2N6388	020(000)	IC= 200mA, IB=0	60 80			V	
ON CHARACTERISTICS			60				
DC Current Gain							
		\/ - 2\/ - 2 0 4	1000	1	20000	I	
2N6386	-	$V_{CE} = 3V, I_{C} = 3.0A$	1000		20000		
2N6387.2N6388	i h₋∟	$V_{CE} = 3V, I_{C} = 5.0A$	1000		20000		
2N6386	, FE	$V_{CE} = 3V, I_{C} = 8.0A$	100				
2N6387.2N6388		V_{CE} = 3V, I_{C} = 10.0A	100				
Collector-Emitter Saturation Voltage					-		
2N6386		$I_C = 3A, I_B = 6mA$			2.0		
2N6387.2N6388	1,,	I _C = Í A,I _B = F€mA		ÁWATTÁK	₩ 2.0	١.,	
2N6386	$V_{CE(sat)}$	I _C = Ì A,I _B = Ì €mA		Á	0. <i>&</i>	V	
2N6387.2N6388		I _C = F€A,I _B = F€€mA/ M/M/MIT/M/M/M/MIT			3.0		
Base-Emitter on Voltage							
2N6386		$V_{CE} = 3V, I_{C} = 3A$			2.8		
2N6387.2N6388	•	$V_{CE} = 3V, I_C = 5A$			2.8		
2N6386	1 V	$V_{CF} = 3V, I_{C} = 8A$			4.5	V	
2N6387.2N6388	-	V_{CE} = 3V, I_{C} =10A			4.5		
DYNAMIC CHARACTERISTICS							
Small Signal Current Gain	h _{fe}	V _{CE} = 5V, I _C =1.0A, Á 1.0KHz	1000				
Output Capacitance	C _{ob}	V _{CB} = 10V,I _E =0,f=1.0MHz			200	pF	

⁽¹⁾ Pulse Test : Pulse width =300µS, Duty Cycle ≤2.0%





Package Details

DIM	B.B.C.	Man
DIM	Min	Max
Α	14.42	16.51
В	9.63	10.67
С	3.56	4.83
D	_	0.90
Е	1.15	1.50
F	3.53	4.10
G	2.29	2.79

DIM	Min	Max	
Н	2.54	3.43	
J	0.36	0.61	
K	12.00	14.73	
L	2.80	6.35	
M	2.00	2.92	
N	_	31.24	
0	7°		

Pin Configurations

Transistors	Pin 1: Base	Pin 2: Collector	Pin 3: Emitter
SCRs	Pin 1: Cathode	Pin 2: Anode	Pin 3: Gate
Triacs	Pin 1: T1	Pin 2: T2	Pin 3: Gate
Regulators	Pin 1: In	Pin 2: Ground	Pin 3: Out

All dimensions are in mm

An IATF 16949, ISO9001 and ISO 14001 Certified Company

Recommended Product Storage Environment for Diode and Transistors

This storage environment assumes that the Diodes and transistors are packed properly inside the original packing supplied by CDIL.

- Temperature 5 °C to 30 °C
- Humidity between 40 to 70 %RH
- Air should be clean.
- · Avoid harmful gas or dust.
- Avoid outdoor exposure or storage in areas subject to rain or water spraying.
- Avoid storage in areas subject to corrosive gas or dust. Product shall not be stored in areas exposed to direct sunlight.
- · Avoid rapid change of temperature.
- Avoid condensation.
- Mechanical stress such as vibration and impact shall be avoided.
- The product shall not be placed directly on the floor.
- The product shall be stored on a plane area. They should not be turned upside down. They should not be placed against the wall.

Shelf Life of CDIL Products

The shelf life of products is the period from product manufacture to shipment to customers. The product can be unconditionally shipped within this period. The period is defined as 2 years.

If products are stored longer than the shelf life of 2 years, the products shall be subjected to quality check as per CDIL quality procedure.

The products are further warranted for another one year after the date of shipment subject to the above conditions in CDIL original packing.

Floor Life of CDIL Products and MSL Level

When the products are opened from the original packing, the floor life will start. For this the following JEDEC table may be referred:

JEDEC MSL Level				
Level	Time	Condition		
1	Unlimited	≤30 °C / 85% RH		
2	1 Year	≤30 °C / 60% RH		
2a	4 Weeks	≤30 °C / 60% RH		
3	168 Hours	≤30 °C / 60% RH		
4	72 Hours	≤30 °C / 60% RH		
5	48 Hours	≤30 °C / 60% RH		
5a	24 Hours	≤30 °C / 60% RH		
6	Time on Label(TOL)	≤30 °C / 60% RH		

Figure 1 Floor Life according to JEDEC MSL Level

Customer Notes

Component Disposal Instructions

- 1. CDIL Semiconductor Devices are RoHS compliant, customers are requested to please dispose as per prevailing Environmental Legislation of their Country.
- 2. In Europe, please dispose as per EU Directive 2002/96/EC on Waste Electrical and Electronic Equipment (WEEE).

Disclaimer

The product information and the selection guides facilitate selection of the CDIL's Semiconductor Device(s) best suited for application in your product(s) as per your requirement. It is recommended that you completely review our Data Sheet(s) so as to confirm that the Device(s) meet functionality parameters for your application. The information furnished in the Data Sheet and on the CDIL Web Site/CD are believed to be accurate and reliable. CDIL however, does not assume responsibility for inaccuracies or incomplete information. Furthermore, CDIL does not assume liability whatsoever, arising out of the application or use of any CDIL product; neither does it convey any license under its patent rights nor rights of others. These products are not designed for use in life saving/support appliances or systems. CDIL customers selling these products (either as individual Semiconductor Devices or incorporated in their end products), in any life saving/support appliances or systems or applications do so at their own risk and CDIL will not be responsible for any damages resulting from such sale(s).

CDIL strives for continuous improvement and reserves the right to change the specifications of its products without prior notice.

CDIL is a registered Trademark of Continental Device India Pvt.Limited

C-120 Naraina Industrial Area, New Delhi 110 028, India. Telephone + 91-11-2579 6150, 4141 1112 Fax + 91-11-2579 5290, 4141 1119

email@cdil.com www.cdil.com

CIN No. - U32109DL1964PTC004291

2N6386,2N6387,2N6388 Rev1 17012022EM