

Complementary Silicon Power Transistors

15 AMP,60-80 VOLT, 75 WATT

NPN 2N6487 2N6488 PNP 2N6490 2N6491

TO-220 Leaded Plastic Package RoHS compliant

TO-220

FEATURES:

1. DC Current Gain Specified to 15 Amperes -

 $h_{FE} = 20-150 @ I_C = 5.0A$

 $h_{FF} = 5.0 \text{ (Min)} @ I_{C} = 15A$

2. Collector-Emitter Sustaining Voltage - @ 200 mAdc

 $V_{CEO(sus)} = 60V(Min) : 2N6487, 2N6490$

 $V_{CEO(sus)} = 80V(Min) : 2N6488, 2N6491$

3. High Current Gain — Bandwidth Product

 $f_T = 5.0 \text{ MHz (Min)} @ I_C = 1.0 \text{A}$

4. TO-220 Compact Package

APPLICATIONS: designed for use in general-purpose amplifier and switching applications

ABSOLUTE MAXIMUM RATINGS (Ta = 25 °C Unless otherwise specified)

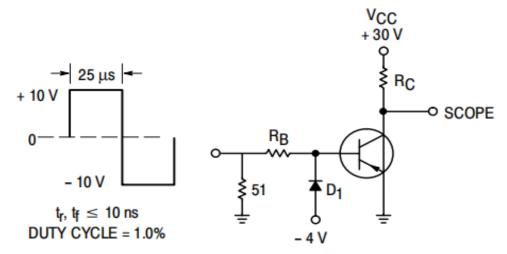
	0.41201	VAL	1 UNIT	
PARAMETER	SYMBOL	2N6487/2N6490 2N6488/2N64		
Collector-Emitter Voltage	V_{CEO}	CEO 60 80		V
Collector-Base Voltage	V_{CB}	70 90		V
Emitter-Base Voltage	V_{EB}	5.0		V
Collector Current Continuous	I _c	15		Α
Base Current	I _B	5.0		Α
Total Power Dissipation @T _C = 25°C	П	75		W
Derate above 25°C	P_{D}	0.	W/°C	
Total Power Dissipation @T _A = 25°C	Б	1.8		W
Derate above 25°C	P _D 0.014		14	W/°C
Operating and Storage JunctionTemperature Range T _J , T _{stg} -65 to +150		+150	°C	
Thermal Resistance,Junction-to-Case	$R_{\theta JC}$	1.67		°C/W
Thermal Resistance, Junction to Ambient	$R_{\scriptscriptstyle{ hetaJA}}$	70		°C/W

ELECTRICAL CHARACTERISTICS at (Ta = 25 °C Unless otherwise specified)

ELECTRICAL CHARACTERISTICS at (1a = 25 °C Unless otherwise specified)							
PARAMETER		SYMBOL	TEST CONDITION	MIN	TYP	MAX	UNIT
OFF CHARACTERISTICS							
	2N6487		I _C = 200mA, I _B = 0	60			
Collector Emitter	2N6490	V _{CEO(sus)}					V
Sustaining Voltage ¹	2N6488	- CEO(sus)		80			
	2N6491 2N6487						
Collector–Emitter	2N6490		I _C = 200mA, V _{BE} = 1.5V	70			
Sustaining Voltage ¹	2N6488	V_{CEX}					V
5 5	2N6491			90			
	2N6487	I _{CEO}	$V_{CF} = 30V, I_{B} = 0$	-		1.0	mA
Collector Cutoff Current	2N6490		VCE OOV, IB O			1.0	
	2N6488	-020	$V_{CF} = 40V, I_{B} = 0$			1.0	
	2N6491 2N6488		-				
	2N6491	I _{CEX}	$V_{CE} = 65V, V_{EB(off)} = 1.5V$			500	
	2N6488		\/ - 95\/ \/ - 15\/			500	
	2N6491		$V_{CE} = 85V, V_{EB(off)} = 1.5V$			300	
Emitter Cutoff Current	2N6488		$V_{CE} = 60V, V_{EB(off)} = 1.5V T_{C}$ = 150°C			5.0	μΑ
	2N6491					0.0	
	2N6488		$V_{CE} = 80V, V_{EB(off)} = 1.5V T_{C}$			5.0	
	2N6491		= 150°C				
Emitter Cutoff Current		I _{EBO}	$V_{BE} = 5.0V, I_{C} = 0$			1.0	mA
ON CHARACTERISTICS							
DC Current Gain		L	$I_C = 5.0A, V_{CE} = 4.0V$	20		150	
		h _{FE}	I _C = 15A, V _{CE} = 4.0V	5.0			
Collector-Emitter Saturation Voltage		V _{CE(sat)}	$I_{\rm C} = 5.0 \text{A}, I_{\rm B} = 0.5 \text{A}$			1.3	V
			$I_{\rm C}$ = 15A, $I_{\rm B}$ = 5.0A				
Base–Emitter On Voltage		$V_{BE(on)}$	$I_{\rm C}$ = 5.0A, $V_{\rm CE}$ = 4.0V			1.3	
			$I_{\rm C}$ = 15A, $V_{\rm CE}$ = 4.0V			3.5	V
DYNAMIC CHARACTERI	STICS					•	
Current Gain - Bandwidth Product ²		f _T	$I_{\rm C} = 1.0 A, V_{\rm CE} = 4.0 V,$	5 0			
			f _{test} = 1.0 MHz	5.0			MHz
Small-Signal Current Gain		h	$I_{\rm C}$ = 1.0A, $V_{\rm CE}$ = 4.0V,	25			
		h _{fe}	f = 1.0 kHz)	25			

Note:

- 1. Pulse Test: Pulse Width ≤ 300 µs, Duty Cycle ≤ 2%
- 2. $fT = |hfe| \cdot f_{test}$
- 3. For PNP devices voltage and current values will be (-)



TEST CIRCUIT AND DIAGRAMS

Switching Time Test Circuit

 $\ensuremath{\mathsf{R}}_B$ and $\ensuremath{\mathsf{R}}_C$ varied to obtain desired current levels. For PNP, reverse all polarities.

D₁ MUST BE FAST RECOVERY TYPE,

TYPICAL CHARACTERISTICS CURVES

Fig 1: Power Derating

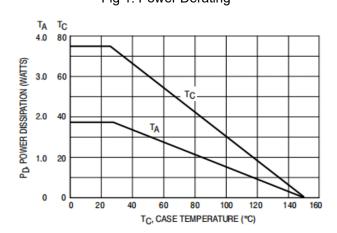


Fig 4: Turn-On Time

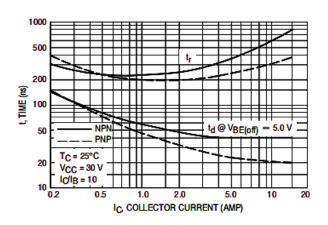


Fig 2: Active-Region Safe Operating Area

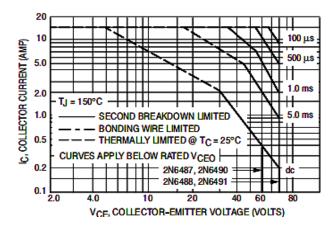
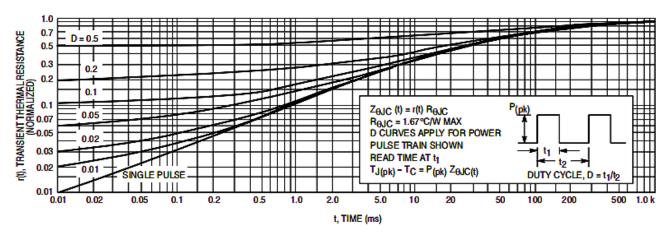



Fig 3: Thermal Response

TYPICAL CHARACTERISTICS CURVES

Fig 5: Typical Small–Signal Current Gain

5000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

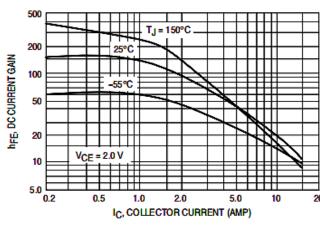
1000

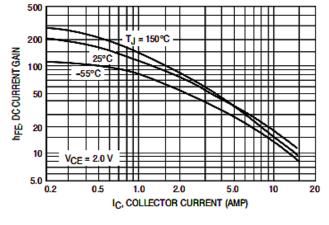
1000

1000

1000

1000

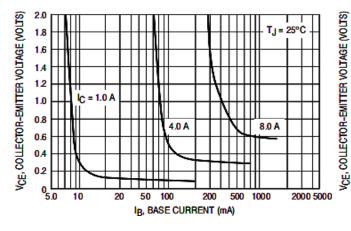

1000

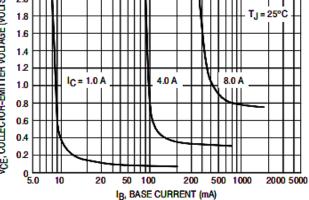

1000

NPN 2N6487, 2N6488

PNP 2N6490, 2N6491

Fig 6: DC Current Gain

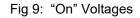


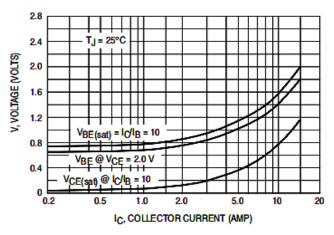


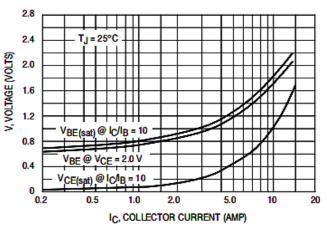
NPN 2N6487, 2N6488

PNP 2N6490, 2N6491

Fig 7: Collector Saturation Region

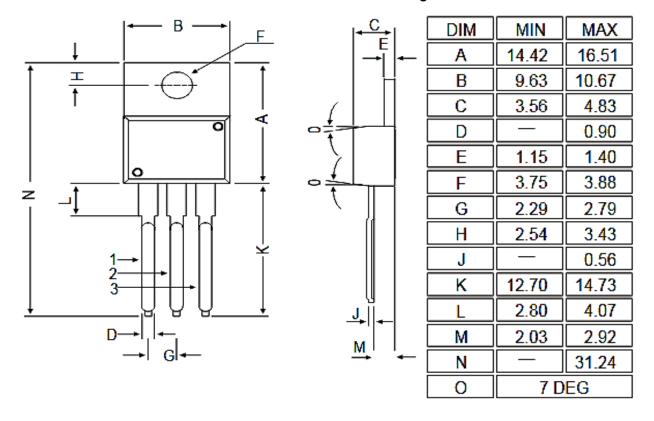


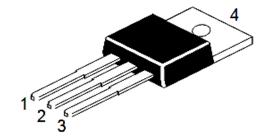



TYPICAL CHARACTERISTICS CURVES

NPN 2N6487, 2N6488

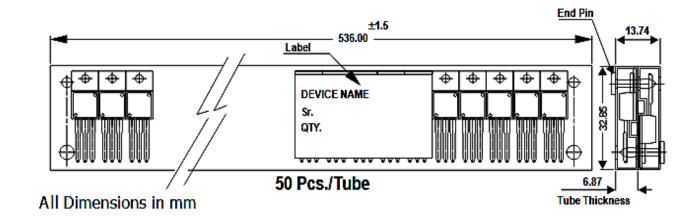
PNP 2N6490, 2N6491

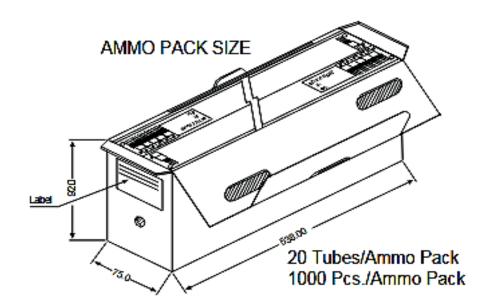



PACKAGE DETAILS

TO-220 Leaded Plastic Package

PIN CONFIGURATIONS


- 1. BASE
- 2. COLLECTOR
- 3. EMITTER
- 4. COLLECTOR



TO-220 Tube Packing

Packing Detail

PACKAGE	STANDARD PACK		INNER CARTON BOX		OUTER CARTON BOX		
	Details	Net Weight/Qty	Size	Qty	Size	Qty	GrWt
TO-220	200 pcs/polybag	396 gm/200 pcs	3"x7.5"x7.5"	1.0K	17" x 15" x 13.5"	16.0K	36 kgs
	50 pcs/tube	120 gm/50 pcs	3.5"x3.7"x21.5"	1.0K	19" x 19" x 19"	10.0K	29 kgs

Recommended Product Storage Environment for Discrete Semiconductor Devices

This storage environment assumes that the Diodes and transistors are packed properly inside the original packing supplied by CDIL.

- · Temperature 5 °C to 30 °C
- · Humidity between 40 to 70 %RH
- · Air should be clean.
- · Avoid harmful gas or dust.
- · Avoid outdoor exposure or storage in areas subject to rain or water spraying .
- · Avoid storage in areas subject to corrosive gas or dust. Product shall not be stored in areas exposed to direct sunlight.
- · Avoid rapid change of temperature.
- · Avoid condensation.
- · Mechanical stress such as vibration and impact shall be avoided.
- · The product shall not be placed directly on the floor.
- The product shall be stored on a plane area. They should not be turned upside down. They should not be placed against the wall.

Shelf Life of CDIL Products

The shelf life of products is the period from product manufacture to shipment to customers. The product can be unconditionally shipped within this period. The period is defined as 2 years.

If products are stored longer than the shelf life of 2 years the products shall be subjected to quality check as per CDIL quality procedure.

The products are further warranted for another one year after the date of shipment subject to the above conditions in CDIL original packing.

Floor Life of CDIL Products and MSL Level

When the products are opened from the original packing, the floor life will start.

For this, the following JEDEC table may be referred:

JEDEC MSL Level				
Level	Time	Condition		
1	Unlimited	≤30 °C / 85% RH		
2	1 Year	≤30 °C / 60% RH		
2a	4 Weeks	≤30 °C / 60% RH		
3	168 Hours	≤30 °C / 60% RH		
4	72 Hours	≤30 °C / 60% RH		
5	48 Hours	≤30 °C / 60% RH		
5a	24 Hours	≤30 °C / 60% RH		
6	Time on Label(TOL)	≤30 °C / 60% RH		

Customer Notes

Component Disposal Instructions

- 1. CDIL Semiconductor Devices are RoHS compliant, customers are requested to please dispose as per prevailing Environmental Legislation of their Country.
- 2. In Europe, please dispose as per EU Directive 2002/96/EC on Waste Electrical and Electronic Equipment (WEEE).

Disclaimer

The product information and the selection guides facilitate selection of the CDIL's Semiconductor Device(s) best suited for application in your product(s) as per your requirement. It is recommended that you completely review our Data Sheet(s) so as to confirm that the Device(s) meet functionality parameters for your application. The information furnished in the Data Sheet and on the CDIL Web Site/CD are believed to be accurate and reliable. CDIL however, does not assume responsibility for inaccuracies or incomplete information. Furthermore, CDIL does not assume liability whatsoever, arising out of the application or use of any CDIL product; neither does it convey any license under its patent rights nor rights of others. These products are not designed for use in life saving/support appliances or systems. CDIL customers selling these products (either as individual Semiconductor Devices or incorporated in their end products), in any life saving/support appliances or systems or applications do so at their own risk and CDIL will not be responsible for any damages resulting from such sale(s).

CDIL strives for continuous improvement and reserves the right to change the specifications of its products without prior notice.

Continental Device India Pvt. Limited

C-120 Naraina Industrial Area, New Delhi 110 028, India.

Telephone +91-11-2579 6150, 4141 1112 Fax +91-11-2579 5290, 4141 1119

email@cdil.com www.cdil.com

CIN No. U32109DL1964PTC004291