


# COMPLEMENTARY DARLINGTON PLASTIC POWER TRANSISTORS



**DPAK (TO-252)** 

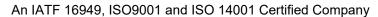


MJD122 NPN MJD127 PNP

DPAK (TO-252) Plastic Package RoHS compliant

## **APPLICATION:**

Designed for General Purpose Amplifier and Low Speed Switching Applications


## **ABSOLUTE MAXIMUM RATINGS** (Ta = 25 °C Unless otherwise specified)

| \                                                    |                 |             |           |
|------------------------------------------------------|-----------------|-------------|-----------|
| PARAMETER                                            | SYMBOL          | VALUE       | UNIT      |
| Collector Base Voltage                               | $V_{CBO}$       | 100         | V         |
| Collector Emitter Voltage                            | $V_{CEO}$       | 100         | V         |
| Emitter Base Voltage                                 | $V_{EBO}$       | 5           | V         |
| Collector Current Continuous                         | I <sub>C</sub>  | 8           | Α         |
| Collector Current Peak                               | I <sub>C</sub>  | 16          | Α         |
| Base Current                                         | I <sub>B</sub>  | 120         | mA        |
| Total Power Dissipation Tc=25°C<br>Derate Above 25°C | P <sub>D</sub>  | 20<br>0.16  | W<br>W/°C |
| Operating and Storage Junction<br>Temperature Range  | $T_{j},T_{stg}$ | -65 to +150 | °C        |

#### THERMAL CHARACTERISTICS

|                  |                 | I    |      |
|------------------|-----------------|------|------|
| Junction to Case | $R_{th\;(j-c)}$ | 6.25 | °C/W |









# **ELECTRICAL CHARACTERISTICS** (T<sub>A</sub> = 25°C; unless otherwise specified)

| DADAMETED                               | CVMDOL                   | TEST CONDITION                                    | VALUE |      |       | LINUT |  |
|-----------------------------------------|--------------------------|---------------------------------------------------|-------|------|-------|-------|--|
| PARAMETER                               | SYMBOL                   | TEST CONDITION                                    |       | TYP. | MAX.  | UNIT  |  |
| Collector Emitter Sustaining<br>Voltage | $V_{CEO}$                | I <sub>C</sub> =30mA, I <sub>B</sub> =0           | 100   |      |       | ٧     |  |
| Collector Cut Off Current               | I <sub>CEO</sub>         | V <sub>CE</sub> =50V, I <sub>B</sub> =0           |       |      | 10    | μΑ    |  |
| Collector Cut Off Current               | I <sub>CBO</sub>         | V <sub>CB</sub> =100V, I <sub>E</sub> =0          |       |      | 10    | μΑ    |  |
| Emitter Cut Off Current                 | I <sub>EBO</sub>         | $V_{EB}$ =5V, $I_{C}$ =0                          |       |      | 2     | mA    |  |
| DC Current Gain                         | Ь                        | $I_C=4A, V_{CE}=4V$                               | 1000  |      | 12000 |       |  |
| DC Current Gain                         | h <sub>FE</sub>          | $I_{C}$ =8A, $V_{CE}$ =4V                         | 100   |      |       |       |  |
| Collector Emitter Saturation Voltage    | $V_{CE(sat)}$            | I <sub>C</sub> =4A, I <sub>B</sub> =16mA          |       |      | 2     | ٧     |  |
| Voltage                                 |                          | I <sub>C</sub> =8A, I <sub>B</sub> =80mA          |       |      | 4     | V     |  |
| Base Emitter Saturation Voltage         | e V <sub>BE(sat)</sub> 1 | I <sub>C</sub> =8A, I <sub>B</sub> =80mA          |       |      | 4.5   | V     |  |
| Base Emitter On Voltage                 | V <sub>BE (on)</sub>     | $I_C=4A, V_{CE}=4V$                               |       |      | 2.8   | V     |  |
| DYNAMIC CHARACTERISTICS                 |                          |                                                   |       |      |       |       |  |
| Current Gain Bandwidth Produc           | ot F <sub>⊤</sub>        | V <sub>CE</sub> =4V, I <sub>C</sub> =3A, f=1MHz   | 4     |      |       | MHz   |  |
| Output Conscitones MJD127               | 7 0                      | I <sub>E</sub> =0, V <sub>CB</sub> =10V, f=0.1MHz |       |      | 300   | , F   |  |
| Output Capacitance MJD122               | C <sub>ob</sub>          |                                                   |       |      | 200   | pF    |  |

## Note:

- 1. Pulse test: Pulse width ≤ 300ms, duty cycle ≤ 2%
- 2. For PNP type voltage and current values are negative.





#### **Recommended Reflow Solder Profiles**

The recommended reflow solder profiles for Pb and Pb-free devices are shown below.

Figure 1 shows the recommended solder profile for devices that have Pb-free terminal plating, and where a Pb-free solder is used.

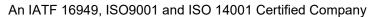

Figure 2 shows the recommended solder profile for devices with Pb-free terminal plating used with leaded solder, or for devices with leaded terminal plating used with a leaded solder.

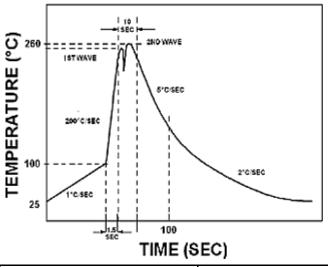
Figure 1 Figure 2 (°C) 300 Max 260°C -40 secs. maximum 10 SEC 250 Typical 245°C 3 x reflow 235 1°C/SEC 217°C **TEMPERATURE** C/SEC 200 200 Pre Heating Zone PREHEAT SOAK Temperature 150 150 150°C 100 C/SEC 100 25 0 50 200 100 150 250 Heating time TIME (SEC)

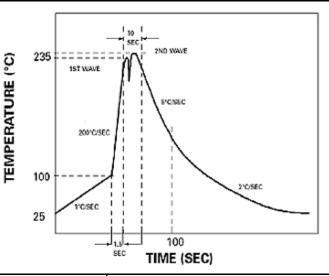
## Reflow profiles in tabular form

| Profile Feature                               | Sn-Pb System                | Pb-Free System              |
|-----------------------------------------------|-----------------------------|-----------------------------|
| Average Ramp-Up Rate                          | ~3°C/second                 | ~3°C/second                 |
| Preheat  - Temperature Range  - Time          | 150-170°C<br>60-180 seconds | 150-200°C<br>60-180 seconds |
| Time maintained above:  – Temperature  – Time | 200°C<br>30-50 seconds      | 217°C<br>60-150 seconds     |
| Peak Temperature                              | 235°C                       | 260°C max.                  |
| Time within +0 -5°C of actual Peak            | 10 seconds                  | 40 seconds                  |
| Ramp-Down Rate                                | 3°C/second max.             | 6°C/second max.             |








## **Recommended Wave Solder Profiles**

The Recommended solder Profile For Devices with Pb-free terminal plating where a Pb-free solder is used

The Recommended solder Profile For Devices with Pb-free terminal plating used with leaded solder, or for devices with leaded terminal plating used with leaded solder





| Profile Feature                       | Sn-Pb System                | Pb-Free System              |
|---------------------------------------|-----------------------------|-----------------------------|
| Average Ramp-Up Rate                  | ~200°C/second               | ~200°C/second               |
| Heating rate during preheat           | Typical 1-2, Max 4°C/sec    | Typical 1-2, Max 4°C/Sec    |
| Final preheat Temperature             | Within 125°C of Solder Temp | Within 125°C of Solder Temp |
| Peak Temperature                      | 235°C                       | 260°C max.                  |
| Time within +0 -5°C of actual<br>Peak | 10 seconds                  | 10 seconds                  |
| Ramp-Down Rate                        | 5°C/second max.             | 5°C/second max              |



T<sub>A</sub> | T<sub>C</sub> 2.5 | 25

2 20

15

10

0 0

P<sub>D</sub> POWER DISSIPATION (WATTS)

# Continental Device India Pvt. Limited

An IATF 16949, ISO9001 and ISO 14001 Certified Company

Figure 1. Power Derating





## **TYPICAL CHARACTERISTICS CURVES**

MOUNT

75

T, TEMPERATURE (°C)

T<sub>C</sub>

T<sub>A</sub>

SURFACE

100

125

Figure 2. Maximum Forward Bias Safe Operating area

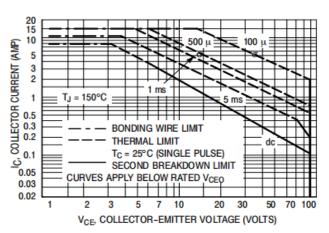



Figure 3. DC Current Gain

#### **PNP MJD127** 20,000 10,000 7000 Z S 5000 $= 150^{\circ}C$ UC CURREIN 3000 2000 1000 700 -55°C 500 200 L 0.1 IC, COLLECTOR CURRENT (AMP)

**NPN MJD122** 

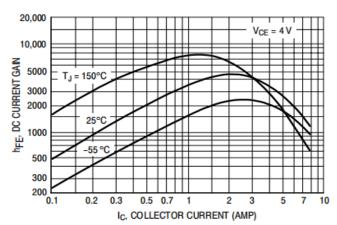
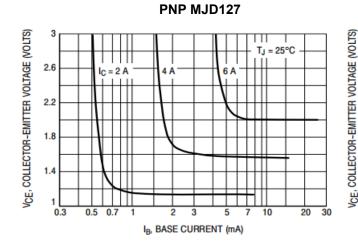
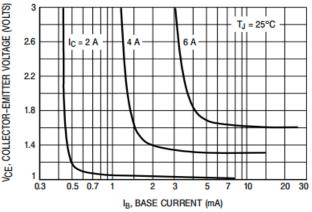





Figure 4. Collector Saturation Region



#### **NPN MJD122**





An IATF 16949, ISO9001 and ISO 14001 Certified Company





## **TYPICAL CHARACTERISTICS CURVES**

Figure 5. "On" Voltages

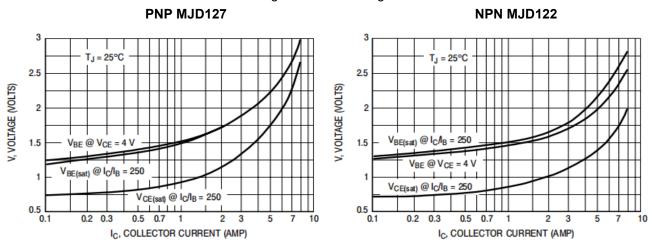



Figure 6. Temperature Coefficients

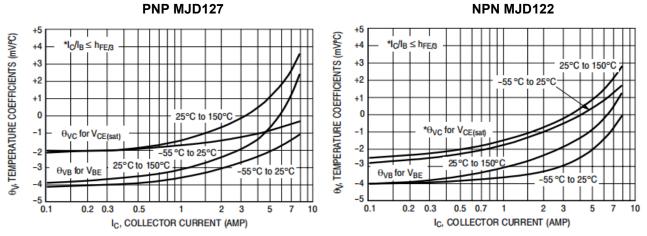
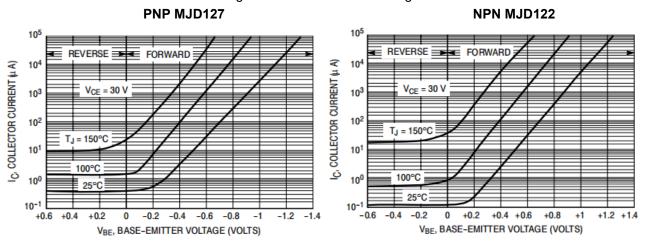
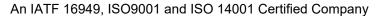





Figure 7. Collector Cut-Off Region











## TYPICAL CHARACTERISTICS CURVES

Figure 8. Small-Signal Current Gain 10.000 5000 SMALL-SIGNAL CURRENT GAIN 3000 2000 1000 500 T<sub>C</sub> = 25°C V<sub>CE</sub> = 4 Vdc 300 200 I<sub>C</sub> = 3 Adc 100 50 30 20 NPN 10 5 20 100 200 500 1000 f, FREQUENCY (kHz)

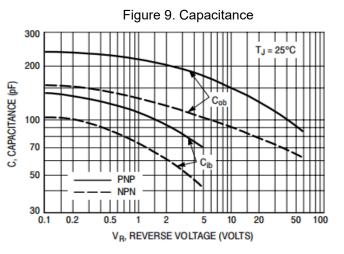



Figure 10. Switching Times Test Circuit

RB & RC VARIED TO OBTAIN DESIRED CURRENT LEVELS V<sub>CC</sub> -30 V D<sub>1</sub>, MUST BE FAST RECOVERY TYPE, e.g.: 1N5825 USED ABOVE I<sub>B</sub> = 100 mA MSD6100 USED BELOW IB = 100 mA R<sub>C</sub> SCOPE TUT  $V_2$ APPROX +8 V V<sub>1</sub> APPROX -12 V FOR  $t_{d}$  AND  $t_{\scriptscriptstyle P}$   $D_{1}$  IS DISCONNECTED  $t_p, t_f \le 10 \text{ ns}$ AND  $V_2 = 0$ DUTY CYCLE = 1% FOR NPN TEST CIRCUIT REVERSE ALL POLARITIES.

Figure 11. Switching Times

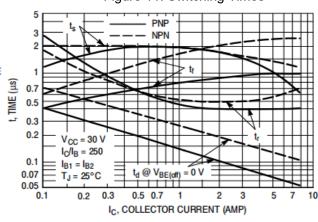
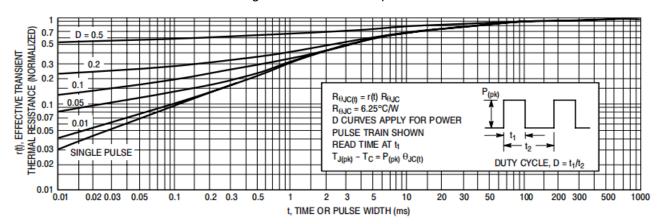
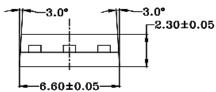
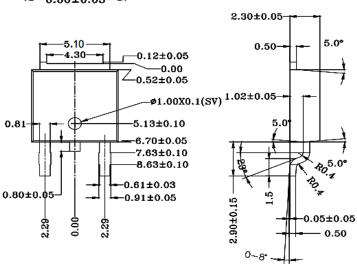




Figure 12. Thermal Response






An IATF 16949, ISO9001 and ISO 14001 Certified Company



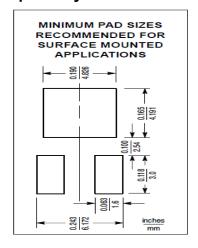



## **PACKAGE DETAILS**

DPAK (TO-252) Plastic Package






All dimensions are in mm

## **Pin Configurations:**

- 1. Base
- 2. Collector
- 3. Emitter



## PCB pads layout:







# Recommended Product Storage Environment for Discrete Semiconductor Devices

This storage environment assumes that the Diodes and transistors are packed properly inside the original packing supplied by CDIL.

- · Temperature 5 °C to 30 °C
- · Humidity between 40 to 70 %RH
- · Air should be clean.
- · Avoid harmful gas or dust.
- · Avoid outdoor exposure or storage in areas subject to rain or water spraying .
- · Avoid storage in areas subject to corrosive gas or dust. Product shall not be stored in areas exposed to direct sunlight.
- · Avoid rapid change of temperature.
- · Avoid condensation.
- · Mechanical stress such as vibration and impact shall be avoided.
- · The product shall not be placed directly on the floor.
- The product shall be stored on a plane area. They should not be turned upside down. They should not be placed against the wall.

#### **Shelf Life of CDIL Products**

The shelf life of products is the period from product manufacture to shipment to customers. The product can be unconditionally shipped within this period. The period is defined as 2 years.

If products are stored longer than the shelf life of 2 years the products shall be subjected to quality check as per CDIL quality procedure.

The products are further warranted for another one year after the date of shipment subject to the above conditions in CDIL original packing.

#### Floor Life of CDIL Products and MSL Level

When the products are opened from the original packing, the floor life will start.

For this, the following JEDEC table may be referred:

| JEDEC MSL Level |                    |                 |
|-----------------|--------------------|-----------------|
| Level           | Time               | Condition       |
| 1               | Unlimited          | ≤30 °C / 85% RH |
| 2               | 1 Year             | ≤30 °C / 60% RH |
| 2a              | 4 Weeks            | ≤30 °C / 60% RH |
| 3               | 168 Hours          | ≤30 °C / 60% RH |
| 4               | 72 Hours           | ≤30 °C / 60% RH |
| 5               | 48 Hours           | ≤30 °C / 60% RH |
| 5a              | 24 Hours           | ≤30 °C / 60% RH |
| 6               | Time on Label(TOL) | ≤30 °C / 60% RH |





#### **Customer Notes**

## **Component Disposal Instructions**

- 1. CDIL Semiconductor Devices are RoHS compliant, customers are requested to please dispose as per prevailing Environmental Legislation of their Country.
- 2. In Europe, please dispose as per EU Directive 2002/96/EC on Waste Electrical and Electronic Equipment (WEEE).

#### **Disclaimer**

The product information and the selection guides facilitate selection of the CDIL's Semiconductor Device(s) best suited for application in your product(s) as per your requirement. It is recommended that you completely review our Data Sheet(s) so as to confirm that the Device(s) meet functionality parameters for your application. The information furnished in the Data Sheet and on the CDIL Web Site/CD are believed to be accurate and reliable. CDIL however, does not assume responsibility for inaccuracies or incomplete information. Furthermore, CDIL does not assume liability whatsoever, arising out of the application or use of any CDIL product; neither does it convey any license under its patent rights nor rights of others. These products are not designed for use in life saving/support appliances or systems. CDIL customers selling these products (either as individual Semiconductor Devices or incorporated in their end products), in any life saving/support appliances or systems or applications do so at their own risk and CDIL will not be responsible for any damages resulting from such sale(s).

CDIL strives for continuous improvement and reserves the right to change the specifications of its products without prior notice.



CDIL is a registered trademark of

#### **Continental Device India Pvt. Limited**